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SIGNAL DETECTION IN ADDITIVE NOISE

Detection of known Signals in Additive Noise

Observation Model

Xi = qsi + Ni, I = 1, 2, 3, …., n
s = (s1, s2, …. sn)T : Signal Vector
N = (N1, N2, …. Nn)T : Noise Vector
X = (X1, X2, …. Xn)T : Observation Vector

q = Signal-strength Parameter
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SIGNAL DETECTION IN ADDITIVE NOISE

Binary Test of Hypotheses

H0 : q = 0 (Noise – only)
H1 : q > 0 (Signal – plus – noise)

T(X) �t

Signal Present

Signal Absent

X

Performance Measures

Detection Probability
Pd = P[T(X) > t | H1]

False Alarm Probability
Pd = P[T(X) > t | H0]



4

Matched Filter Detector

SIGNAL DETECTION IN ADDITIVE NOISE
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• Uses linear test statistic
Maximizes SNR at the filter output

• For Gaussian Noise, MF Detector achieves maximum detection  
probability for a given false alarm probability

• Also optimum for correlated Gaussian noise.

• Becomes suboptimum for non-Gaussian noise.
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Locally Optimum Detector

SIGNAL DETECTION IN ADDITIVE NOISE
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• TLO(X) = TMF(X) for Gaussian distribution

• TLO(X) exists for many non-Gaussian distributions

• Optimum for vanishingly small SNR and large n.

• Performance degrades for the case of

strong signals
finite
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Probability Density Functions

(1) Gaussian PDF

SIGNAL DETECTION IN ADDITIVE NOISE
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(2) Double Exponential (DE) PDF
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SIGNAL DETECTION IN ADDITIVE NOISE

(3) Contaminated Gaussian (CG) PDF

(4) Cauchy PDF
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NEURAL NETWORK FOR SIGNAL DETECTION

Block Diagram of a Neural Detector



9

NEURAL NETWORK FOR SIGNAL DETECTION

Training the network

Number of input nodes: n = 10
Number of hidden layers: one

Number of hidden nodes: five

Training algorithm: Back-propagation

Activation Function: Sigmoid (from 0 to 1)

During each epoch

Input Output
noise only vector zero
signal plus noise vector one
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NEURAL NETWORK FOR SIGNAL DETECTION

Operation of the Neural Detector

• Output node value ≥  0.5  Þ Signal present

• Output node value <  0.5  Þ Signal absent

• The trained network has some specific detection and false alarm 
probabilities. Network performance is optimum

• To vary false alarm probability
- tune the bias weight at the output node
- alternatively, vary the output node threshold
- Some loss of performance may be exhibited in this case
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The Multi-tone Detection and Estimation

• Neural Networks for Noise Reduction

• Neural Network Filters

• Parallel Bank of NN Filters

• Tunable NN Filters

• Simulation Results

• MFSK Receiver Application
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The Multi-tone Detection and Estimation Problem

Given a multi-tone signal corrupted by additive white noise, finding the 
approximate frequency band in which it lies and estimating the frequencies 
using spectral estimators

Neural Network
Preprocessor

Spectral Estimator
&

Threshold Detector

Multi-tone signal

in white noise

Signal

Frequencies

Neural Networks for Noise Reduction

Non-linear mapping from the noisy signals to the noiseless ones obtained by the 
non (semi) linear sigmoidal squashing function. Bandpass filtering removes the 
noise outside the band and improves the signal to noise ratio.

Ideally, we expect the network to learn to separate the signal from the noisy 
signal for the entire range of frequencies, in spite of the number of sinusoids in 
the signal. In practice, it detects well only when a single sinusoid is present.
For more than one sinusoid, the net learns only one dominant sinusoid.



17

The Multi-tone Detection and Estimation Problem

This very limitation leads to a solution.

Neural Networks as filters

When trained in a specific frequency band using the standard backpropagation 
algorithm, the Neural Network acts as a good filter giving:
High gain in the passband, good attenuation in the stopband & sharp transitions 

Backpropagation
Trained

Neural Net

Multi-tone Input
training patterns

Band limited desired
Output patterns

Acts as a filtering passing

Frequencies in that band alone.

Problem Solution:
Partition the normalized frequency spectrum into 20 bands.
Train a bank of 20 such Neural Nets in each of these bands.

Drawbacks:
Even the noise in the passband gets amplified & leads to High false alarm rates
The stopband signals get passed in some cases. (Poor reliability on detection)
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Tunable NN Filter

S.S.Rao & S.Sethuraman, “A Tunable Neural Network Filter for Multi-tone Detection”, (Published in the MILCOM’92 Conference records, San Diego, CA)
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Tunable Filter Performance & Applications

• High gain the band chosen by the code (Selection)
• Large Attenuation outside the chosen band (Rejection)
• An average of (<)10% probability of false alarm at 0 dB.
• When trained at a particular SNR, there is a graceful degradation with   

higher SNRs
• Good generalization from the training data.
• Parsimony in weights compared to the parallel bank of NN Filters.

How is detection done ?

Place the noisy signal at the input. Sweep through 8 codes.
Square and sum the output and threshold it. If the threshold is exceeded, then 
it is declared as ‘signal present’, in the band corresponding to the code.

Where can this be used ?
MFSK, where M = 2k frequencies are used to represent the combinations of 
k bits. In these cases, the frequencies of interest are know beforehand and 
can be used for training
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Hopfield Neural Network for Spectral Estimation

The model for an AR process is given by
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Hopfield Neural Network for Spectral Estimation

• Defining
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Now, on convergence the output of the network will give the vector a.
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Hopfield Neural Network for Spectral Estimation

• The activation function chosen for the neurons is a soft limiter given by

ai = neti / b if | neti | < bb

= b if | neti | > bb

= - b if | neti | < -bb

where
å ++=+ iiijii IaWt nettnet )()1(

This leads to an iterative method of computing the AR coefficients
of a given time series
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Hopfield Neural Network for Spectral Estimation

• Given now the AR coefficients, the power spectral density can be written as,
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where T   :  sampling time
s2 :  variance of the white noise

• For the complex sinusoids case, the weights and inputs to the network
are modified as follows:
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Hopfield Neural Network for Spectral Estimation

• Hopfield Neural Network for spectral estimation is found to be

robust upto 3 dB

poor performance for closely spaced sinusoids

no spurious peaks for large model orders
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Unsupervised Learning

Hebbian Rule:   Dwj = hyxj, y = xtw (unbounded)
Oja’s modified Rule:    Dw = hy(x-yw) = h(I-wwt) xxtw (normalized)
Oja’s Rule for multiple output case:    Dwij = hyi(xj - Sykwkj)
Oja’s rule is used to extract the principal eigenvectors of C = E(xxt)
Other modifications – with orthogonalizing lateral connections as in APEX

E. Oja, “A simplified Neuron model as a Principal Compnent Analyzer”, J.Math.Biology, Vol.15, pp.267-273, 1982
S. Y .Kung & K. I. Diamantaras, “A neural network learning algorithm for adaptive principal component extraction:, pp.861-864, Proc. Of  ICASSP’90
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NEURAL NETWORKS: The Representation by 
Approximation Schemes

Approximation Problem:
Let f(x) be a real-valued function defined on a set X, and let F(A,x) be a 
real-valued approximating function depending continuously on x e X and 
on n parameters, A. Given the distance function d, determine the 
parameters A* eA such that

d [ F(A*, x), f(x) ] £ d [ F(A, x), f(x) ] 

for all A* eA 
A is the space in which parameters lie and is usually the ordinary 
Euclidean space. The distance d is a “measure of the approximation” and 
is generally given as the Lp norm of the difference F(A*, ) – f(x); i.e. 
d = Lp[ F(A*, x) – f(x) ]
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The Representation by Approximation Schemes

The solution, the approximation problem is said to be a best approximation 
of the underlying function

• For example, a linear approximation is given by
F(W,X) = WX
where W  : a m x n matrix of coefficients

X  : n x 1 vector of input variables
Network  : n inputs, m outputs and no hidden nodes

• For example, spline fitting, single layer BPBs etc. can be represented  by
F(W,X) = W F (X)

as a linear combination of a suitable set of basis functions
This corresponds to a network with one hidden layer.

• For example, Backpropagation networks with multiple layers may be 
expressed as
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where s is the sigmoidal function and Wn, vi, uj …. are the adjustable 
coefficients
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The Representation by Approximation Schemes

• Approximation by Expansion on an Orthonormal Basis

Consider a function F(X) which is assumed to be continuous in the range [0,1]. 
Let Fi(x) , i = 1, 2, …¥ be an orthonormal set of continuous function in [0,1]. 
Then, F(X) possesses a unique L2 approximation (Rice, 1964) of the form:
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where C = [C1, C2, …. Cn]T are given by the projection of F(X) onto each 
basis function, i.e. 
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The set [Fk(X)] is complete as we include more basis functions and in the
limit, error tends to zero.
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The Representation by Approximation Schemes

If we include K terms in the approximation, the error is given by
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The larger the value of the coefficient, Ck, the greater the contribution of 
the corresponding basis function, Fk(X) in the approximating function. 
This then provides a criterion for picking the most important activation 
function in each hidden unit of the network.

• Smallest Network by Approximation theory:

Given an orthogonal set of functions, Fk(X), k = 1, 2, …. ¥, the smallest 
network for approximating a function F(X) that is continuous in [0,1], 
with a desired accuracy is achieved by selecting basis functions 
corresponding to the largest coefficients Ck, calculated by (2). The 
resulting error is defined by L2 error given by (3)
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The Representation by Approximation Schemes

• Wavelets as Basis Functions for Neural Networks

A family of wavelets is derived from translations and dilations of a single
function. If Y(X) is the starting function, to be called Wavelet, the members
of the family are given by
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s:    indicating dilation

u:    indicating translation
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The Representation by Approximation Schemes

If the input, X is defined in a discrete domain and if the dilation of the

wavelet is always by the factor of 2, the resulting family of discrete
dyadic wavelets is represented by

2),(for         22 ZkmX-k)Ψ( -m-m Î

m:    The size of the dilation (as a multiple of 2)

k:     The discrete-step translation of the wavelet, Y(X)

They are related to the continuous parameters

s = 2m, u = k2m
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The Representation by Approximation Schemes

Orthonormal wavelets (Mayer, 1985; Daubechies, 1988; Mallet 1989;
Strag, 1989)

Examples are: Meyer wavelet, the Haar wavelet, the Battle – Lemarie
wavelets, Daubechies compactly supported wavelets.

Reference Texts:

Wavelets: Volume I, II, Charles K. Chui, Academic press, INC 1992
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The Representation by Approximation Schemes

• Wave-Nets: (B.R. Bakshi and G. Stephanopoulous 1992)

A wave-net consists of input and output nodes and two types of hidden 
layer nodes: wavelet nodes of Y–modes, and scaling function nodes,
or F–nodes.
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The basis functions associated with the hidden layer nodes are:

a. Basis functions for F-nodes: FLK(X), K = 1, 2, …., nL; the translates 
of the dilated scaling function, F(X), which form the orthonormal 
basis for the approximation of the unknown function, F(X), at the 
L-th coarsest resolution.

b. Basis functions for Y-nodes: Ymk(X), m = 1, 2, …., L, and k = 1, 2, 
…., nm; the translates of the dilated wavelet, Y(X), which form the 
orthonormal basis for detail of function, F(X), at each resolution.

The Representation by Approximation Schemes
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